On Spectral Properties of Steepest Descent Methods
نویسندگان
چکیده
In recent years it has been made more and more clear that the critical issue in gradient methods is the choice of the step length, whereas using the gradient as search direction may lead to very effective algorithms, whose surprising behaviour has been only partially explained, mostly in terms of the spectrum of the Hessian matrix. On the other hand, the convergence of the classical Cauchy steepest descent (SD) method has been extensively analysed and related to the spectral properties of the Hessian matrix, but the connection with the spectrum of the Hessian has been little exploited to modify the method in order to improve its behaviour. In this work we show how, for convex quadratic problems, moving from some theoretical properties of the SD method, second-order information provided by the step length can be exploited to dramatically improve the usually poor practical behaviour of this method. This allows to achieve computational results comparable with those of the Barzilai and Borwein algorithm, with the further advantage of a monotonic behaviour.
منابع مشابه
A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems
In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...
متن کاملHybrid steepest-descent method with sequential and functional errors in Banach space
Let $X$ be a reflexive Banach space, $T:Xto X$ be a nonexpansive mapping with $C=Fix(T)neqemptyset$ and $F:Xto X$ be $delta$-strongly accretive and $lambda$- strictly pseudocotractive with $delta+lambda>1$. In this paper, we present modified hybrid steepest-descent methods, involving sequential errors and functional errors with functions admitting a center, which generate convergent sequences ...
متن کاملA new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations
In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...
متن کاملSteepest Descent
The steepest descent method has a rich history and is one of the simplest and best known methods for minimizing a function. While the method is not commonly used in practice due to its slow convergence rate, understanding the convergence properties of this method can lead to a better understanding of many of the more sophisticated optimization methods. Here, we give a short introduction and dis...
متن کاملResidual norm steepest descent based iterative algorithms for Sylvester tensor equations
Consider the following consistent Sylvester tensor equation[mathscr{X}times_1 A +mathscr{X}times_2 B+mathscr{X}times_3 C=mathscr{D},]where the matrices $A,B, C$ and the tensor $mathscr{D}$ are given and $mathscr{X}$ is the unknown tensor. The current paper concerns with examining a simple and neat framework for accelerating the speed of convergence of the gradient-based iterative algorithm and ...
متن کامل